Smart grids may be characterized as the amalgamation of electrical grids, communication networks, specialized hardware, and computational intelligence (algorithms). This integration aims to oversee, regulate, and coordinate the generation, distribution, storage, and utilization of energy. Indeed, smart grid technologies have the potential to facilitate the distribution of substantial quantities of power generated from renewable sources. For this purpose, a comprehensive modeling approach is employed to simplify and enhance the feasibility of the task. It introduces a highly intricate system where modeling the components and relationships between entities proves challenging. Optimal energy management is necessary in this case. This paper provides a summary of an investigation into the modeling and optimal management of smart grids. In fact, this work allows a discussion of a hybrid system. Then we briefly introduce the domain of conceptual modeling within the enterprise.