The electric catfish, Malapterurus electricus, possesses electric organs that are innervated by a pair of identifiable electromotoneurons located within the cervical spinal cord. The pattern of synaptic innervation of the electromotoneurons can be revealed by an antibody against the synaptic vesicle protein SV2. Both somata and proximal dendrites are densely innervated. Several transmitters contribute to this innervation. Glutamate, the neurotransmitter of the dorsal root sensory fibers, reveals a weak punctuate immunoreactivity. The previously described electrical synapses of the electromotoneurons were visualized by an antibody against a gap-junctional protein. In contrast to the electromotoneurons of other electric fish, the electric catfish electromotoneurons possess many inhibitory synapses. With antibodies against glycine and against the glycine receptor, a dense immunoreactivity of the surface of the somata and proximal dendrites can be revealed. The glycine receptor-like immunoreactivity exhibits a patch-like distribution similar to that revealed by the anti-SV2 antibody. gamma-Aminobutyric acid (GABA)-immunopositive terminals contribute to the inhibitory electromotoneuron innervations to a lesser degree. The chemical characteristics of the electromotoneuron innervations of Malapterurus resemble those of other spinal motoneurons rather than spinal electromotoneurons of other electric fish. Thus our immunocytochemical study supports the view that the pattern of electromotoneuron innervations in Malapterurus reveals little specialization. The capacity for information processing required for the control of the electric organ discharge appears to be achieved by the increased integrational capacity of the newly evolved multiple dendrites and not by an additional parallel channel specific for the electromotor system.