The fetus may be exposed to increased endogenous glucocorticoid or synthetic glucocorticoid in late gestation. Approximately 7% of pregnant women in Europe and North America are treated with synthetic glucocorticoid to promote lung maturation in fetuses at risk of preterm delivery. Very little is known about the mechanisms by which synthetic glucocorticoid or prenatal stress influence neurodevelopment in the human, or whether specific time windows of increased sensitivity exist. Glucocorticoids are essential for many aspects of normal brain development, but exposure of the fetal brain to excess glucocorticoid can have life-long effects on neuroendocrine function and behaviour. Both endogenous glucocorticoid and synthetic glucocorticoid exposure have a number of rapid effects in the fetal brain, including modification of neurotransmitter systems and transcriptional machinery. Such fetal exposure permanently alters hypothalamo-pituitary-adrenal (HPA) function in prepubertal, postpubertal and aging offspring, in a sex-dependent manner. Prenatal glucocorticoid manipulation also leads to modification of behaviour, brain and organ morphology, as well as altered regulation of other endocrine systems. Permanent changes in endocrine function will impact on health, since elevated cumulative exposure to endogenous glucocorticoid is linked to the premature onset of pathologies associated with aging.
Read full abstract