Distinct approaches are used to reduce the fire risks of polymers, a key issue for many industrial applications. Among the variety of approaches, the use of synergy in halogen-free multicomponent systems is one of the most auspicious. To optimize the composition of such flame-retardant systems it is essential to understand the mechanisms and the corresponding chemistry in the condensed phase. In this work different methods are used, including cone calorimeter, thermogravimetry (TG), and TG-FTIR, with the main focus on the solid-state NMR analysis of the solid residues. The structural changes in the condensed phase of two thermoplastic elastomer systems based on copolymer styrene-ethylene-butadiene-styrene (TPE-S) were investigated: TPE-S/aluminium diethylphosphinate (AlPi)/magnesium hydroxide (MH) and TPE-S/AlPi/zinc borate (ZB)/poly(phenylene oxide) (PPO). Strong flame inhibition is synergistically combined with protective layer formation. 13C-, 27Al-, 11B- and 31P MAS NMR (magic angle spinning nuclear magnetic resonance) experiments using direct excitation with a single pulse and 1H–31P cross-polarization (CP) were carried out as well as double resonance techniques. Magnesium phosphates were formed during the pyrolysis of TPE-S/AlPi/MH, while for the system TPE-S/AlPi/ZB/PPO zinc phosphates and borophosphates were observed. Thus, the chemistry behind the chemical interaction was characterized unambiguously for the investigated systems.
Read full abstract