Instability and dewetting engendered by the van der Waals force in soft thin (<100 nm) linear viscoelastic solid (e.g., elastomeric gel) films on uniform and patterned surfaces are explored. Linear stability analysis shows that, although the elasticity of the film controls the onset of instability and the corresponding critical wavelength, the dominant length-scale remains invariant with the elastic modulus of the film. The unstable modes are found to be long-wave, for which a nonlinear long-wave analysis and simulations are performed to uncover the dynamics and morphology of dewetting. The stored elastic energy slows down the temporal growth of instability significantly. The simulations also show that a thermodynamically stable film with zero-frequency elasticity can be made unstable in the presence of physico-chemical defects on the substrate and can follow an entirely different pathway with far fewer holes as compared to the viscous films. Further, the elastic restoring force can retard the growth of a depression adjacent to the hole-rim and thus suppress the formation of satellite holes bordering the primary holes. These findings are in contrast to the dewetting of viscoelastic liquid films where nonzero frequency elasticity accelerates the film rupture and promotes the secondary instabilities. Thus, the zero-frequency elasticity can play a major role in imposing a better-defined long-range order to the dewetted structures by arresting the secondary instabilities.