Elastomers help improve the toughness of lightweight high-strength materials, offering significant potential for enhancing the mechanical properties. However, introducing elastomers into CFRP interlayers as skin for composite sandwich structures has not yet been explored regarding the impact responses of such novel structures. This paper, for the first time in literature studies the low-velocity impact behavior and damage mechanisms of this novel sandwich structure using a combined experimental and numerical approach. The experimental results of sandwich structures with and without elastomer layers under different impact energies are presented. Finite element models of the two sandwich structures are built and impact behaviors were compared. The differences in internal damage and energy distribution during the impact are investigated to explain the reasons for the differing impact responses of the two sandwich structures. The results reveal that elastomeric interlayers have a significant advantage in enhancing the damage resistance of composite sandwich structures, especially under high impact energy conditions. The key contributions of this paper include the experimental characterization of the impact behavior of composite sandwich structures with elastomeric interlayers, and the explanation of the reasons for the changes in impact responses caused by the elastomers from the perspectives of damage mechanisms and energy distribution.