To determine whether adding elastography strain ratio (SR) and a deep learning based computer-aided diagnosis (CAD) system to breast ultrasound (US) can help reclassify Breast Imaging Reporting and Data System (BI-RADS) 3 and 4a-c categories and avoid unnecessary biopsies. This prospective, multicentre study included 1049 masses (691 benign, 358 malignant) with assigned BI-RADS 3 and 4a-c between 2020 and 2022. CAD results was dichotomized possibly malignant vs. benign. All patients underwent SR and CAD examinations and histopathological findings were the standard of reference. Reduction of unnecessary biopsies (biopsies in benign lesions) and missed malignancies after reclassified (new BI-RADS 3) with SR and CAD were the outcome measures. Following the routine conventional breast US assessment, 48.6% (336 of 691 masses) underwent unnecessary biopsies. After reclassifying BI-RADS 4a masses (SR cut-off <2.90, CAD dichotomized possibly benign), 25.62% (177 of 691 masses) underwent an unnecessary biopsies corresponding to a 50.14% (177 vs. 355) reduction of unnecessary biopsies. After reclassification, only 1.72% (9 of 523 masses) malignancies were missed in the new BI-RADS 3 group. Adding SR and CAD to clinical practice may show an optimal performance in reclassifying BI-RADS 4a to 3 categories, and 50.14% masses would be benefit by keeping the rate of undetected malignancies with an acceptable value of 1.72%. Leveraging the potential of SR in conjunction with CAD holds immense promise in substantially reducing the biopsy frequency associated with BI-RADS 3 and 4A lesions, thereby conferring substantial advantages upon patients encompassed within this cohort.
Read full abstract