In this paper, we study the Γ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Gamma $$\\end{document}-limit of a properly rescaled family of energies, defined on a narrow strip, as the width of the strip tends to zero. The limit energy is one-dimensional and is able to capture (and penalize) concentrations of the midline curvature. At the best of our knowledge, it is the first paper in the Γ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Gamma $$\\end{document}-convergence field for dimension reduction that predicts elastic hinges. In particular, starting from a purely elastic shell model with “smooth” solutions, we obtain a beam model where the derivatives of the displacement and/or of the rotation fields may have jump discontinuities. Mechanically speaking, elastic hinges can occur in the beam.
Read full abstract