The unconsolidated near surface and large, daily temperature variations in the desert environment degrade the vertical seismic profiling (VSP) data, posing the need for rigorous quality control. Distributed acoustic sensing (DAS) VSP data are often benchmarked using geophone surveys as a gold standard. This study showcases a new simulation-based way to assess the quality of DAS VSP acquired in the desert without geophone data. The depth uncertainty of the DAS channels in the wellbore is assessed by calibrating against formation depth based on the concept of conservation of the energy flux. Using the 1D velocity model derived from checkshot data, we simulate both DAS and geophone VSP data via an elastic pseudo-spectral finite difference method, and estimate the source and receiver signatures using matching filters. These field geophone data show high amplitude variations between channels that cannot be replicated in the simulation. In contrast, the DAS simulation shows a high visual similarity with the field DAS first arrival waveforms. The simulated source and receiver signatures are visually indistinguishable from the field DAS data in this study. Since under perfect conditions, the receiver signatures should be invariant with depth, we propose a new DAS data quality control metric based on local variations of the receiver signatures which does not require geophone measurements.