Abstract

Two 2D reflection seismic profiles were acquired in Blötberget, south-central Sweden, for deep targeting and delineation of sheet-like iron-oxide deposits, known to dip toward the southeast and extend down to at least 0.8 km depth from core drilling observations. The two perpendicular profiles recorded shots at every receiver station along the main and cross profiles. To obtain more information on the lateral extent of the mineralized horizons, data from the two profiles, including the cross-profile records, were binned together in a 3D grid and further processed as a 3D data set. Processing results suggest that more information is retrieved when 3D processing is used and the mineralization lateral extent can be inferred for at least 0.3 km. The seismic response of the mineralization was further studied through forward reflection traveltime modeling, using a 3D ray-tracing approach; thus, the 3D geometry of several planar reflectors was validated. Additionally, 2D elastic finite-difference modeling work showed that the observed reflection pattern in the seismic data may originate from several mineralized horizons, suggesting potential resources in the footwall of the known deposits and large-scale geologic structures. The results encourage the use of seismic methods for direct delineation of mineral deposits even from 2D profiles and prompted a 3D survey in the area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call