The human body consists of many different soft biological tissues that exhibit diverse microstructures and functions and experience diverse loading conditions. Yet, under many conditions, the mechanical behaviour of these tissues can be described well with similar nonlinearly elastic or inelastic constitutive relations, both in health and some diseases. Such constitutive relations are essential for performing nonlinear stress analyses, which in turn are critical for understanding physiology, pathophysiology and even clinical interventions, including surgery. Indeed, most cells within load-bearing soft tissues are highly sensitive to their local mechanical environment, which can typically be quantified using methods of continuum mechanics only after the constitutive relations are determined from appropriate data, often multi-axial. In this review, we discuss some of the many experimental findings of the structure and the mechanical response, as well as constitutive formulations for 10 representative soft tissues or organs, and present basic concepts of mechanobiology to support continuum biomechanical studies. We conclude by encouraging similar research along these lines, but also the need for models that can describe and predict evolving tissue properties under many conditions, ranging from normal development to disease progression and wound healing. An important foundation for biomechanics and mechanobiology now exists and methods for collecting detailed multi-scale data continue to progress. There is, thus, considerable opportunity for continued advancement of mechanobiology and biomechanics.
Read full abstract