The fuel supply system is a critical element in Proton Exchange Membrane Fuel Cell (PEMFC). In vehicular applications, an anode recirculation system (ARS) is required to return residual hydrogen to the fuel line. A 1D model of an ejector-based ARS was created and integrated with a vehicular PEMFC in this study. Therefore, two configurations, single-ejector-based and dual-ejector-based ARS, were developed to regulate the fuel supply and, thus, utilized to examine and conduct a comparative study of their advantages and disadvantages to the dynamic behavior of the stack. The use of ARS was found to improve stack performance and fuel utilization by delivering high stoichiometry, recirculation rate, and relative humidity. Contrary to a single-ejector-based ARS, whose use is restricted due to its limited working range, dual-ejectors can cover all fuel cell stack operating ranges. Sensitivity analysis revealed that primary pressure was the most significant parameter affecting ejector performance and flow characteristics.