This article mainly concerns with the non-existence, existence, and multiplicity results for positive solutions to the Einstein-scalar field Lichnerowicz equation on closed manifolds with a negative conformal-scalar field invariant. This equation arises from the Hamiltonian constraint equation for the Einstein-scalar field system in general relativity. Our analysis introduces variational techniques to the analysis of the Hamiltonian constraint equation, especially those cases when the prescribed scalar curvature-scalar field function may change sign. To our knowledge, such a problem remains open.