Under hard operating conditions such as high load, low speed and a lack of a sufficient quantity of lubricant, the sliding pairs could suffer serious damage. One of the methods that improves the tribological performance of sliding elements in hard operating conditions is the appropriate surface creation that keeps lubricating substance in cavities. This article presents the results obtained in experimental investigations of the oil film thickness in lubricated non-conformal contact with a different surface topography of the sliding element. The tests were conducted on a ball-on-disc instrument equipped with colorimetric interferometry. Balls of diameter equaled to 19.05 mm were produced from 100 Cr6 steel. To provide hard operating conditions, the glass disc rotated at small speeds in the range of 0.1-0.2 m/s. The tests were carried out at loads of 20 N and 30 N. As a result, in most cases, the highest minimum and average oil film thickness values were obtained when the surface of steel balls was characterized by high negative asymmetry with mainly shallow cavities and some valleys of great depth compared to the height of the peaks. The modified sliding surface that had better performance comprised a comparatively small number of peaks and the curvature of the peaks were large.
Read full abstract