Eggplant is an important vegetable that has long been cultivated in different parts of Iran. The major objectives of the eggplant breeding program are to improve fruit quality, increase yield performance through heterosis breeding, and introduce abilities of pest and disease resistance from wild relatives. In order to select suitable parents for breeding purposes, with respect to the genetic and morphological diversity of eggplant cultivars, it is necessary to have sufficient knowledge of genetic diversity and classification of germplasms. This experiment was conducted in a randomized block design at the Seed and Plant Improvement Institute (SPII) in Karaj, Iran. Here, morphological diversity was assessed among a collection of eggplants which comprised four Iranian lines and 13 non-Iranian genotypes. For this purpose, 16 morphological traits were analyzed in the plants. Given the weakness of morphological analysis in providing precise characterizations of genetic divergence, a molecular study was also carried out by using five Simple Sequence Repeat (SSR) markers. In addition to the univariate analysis, the multi-descriptor variation was studied among the genotypes using two methods of multivariate analyses. The genotypes differed significantly in terms of the morphological traits. The multivariate analyses of morphological data indicated that eggplants from two different origins were clearly differentiated. Three main clusters were distinguished by a morphological UPGMA dendrogram in which non-Iranian genotypes, with the exception of 11,212, constituted cluster I and required the maximum number of days to flower, days to fruit set, and days to first harvest. Cluster II was identified with two Iranian lines BJ30, Y60, and one non-Iranian genotype (11,212) which showed the highest values of stem diameter, fruit diameter, fruit length, fruit length-to-width ratio, number of fruits per plant, and yield. Cluster III comprised two Iranian lines, D1 and D7, and showed the maximum plant height, number of internodes, number of nodes, number of leaves, number of stems, fruit weight, and fruits weight per plant. The highest and lowest intra-cluster genetic distances were observed in cluster I and cluster II, respectively. Based on SSR analysis, high levels of similarity were detected between several genotypes, namely, Y60 and 13,411; BJ30 and 1111; D7 and 13,521; 21,881 and 13,421. High levels of heterozygosity and polymorphism information content (PIC) were observed in this study. This not only indicated high levels of polymorphism and an equal distribution of the evaluated loci but also suggested that these genotypes can be considered for the development of diverse parental lines which are of interest in breeding programs.