Mesolimbic dopamine (DA) plays a critical role in behavioral activation and exertion of effort in motivated behaviors. DA antagonism and depletion in nucleus accumbens (Nacb) induces anergia in effort-based decision-making tasks. Exercise improves motor function in Parkinson's disease (PD). However, the beneficial effects of physical exercise on anergia, a symptom present in many psychiatric and neurological pathologies needs to be studied. During 9 weeks, young CD1 male mice were trained to run at a moderate speed in automatically turning running wheels (RW) (forced exercise group) or locked in static RWs (control group) in 1 h daily sessions. Both groups were tested in a 3-choice-T-maze task developed for the assessment of preference between active (RW) vs. sedentary reinforcers, and vulnerability to DA depletion-induced anergia was studied after tetrabenazine administration (TBZ; VMAT-2 blocker). Exercise did not change spontaneous preferences, did not affect body weight, plasma corticosterone levels or measures of anxiety, but it increased the cerebral DA neurotrophic factor (CDNF) in Nacb core, suggesting a neuroprotective effect in this nucleus. After TBZ administration, only the non-trained group showed a shift in relative preferences from active to sedentary options, reducing time running but increasing consumption of pellets, thus showing a typical anergic but not anhedonic effect. Moreover, only in the non-trained group, phosphorylation of DARPP-32(Thr34) increased after TBZ administration. These results are the first to show that mild forced exercise carried out from a young age to adulthood could act on Nacb-related functions, and prevent the anergia-inducing effects of DA depletion.