Multidrug-resistant (MDR) and extended spectrum β-lactamase (ESBL)-producing extra-intestinal K. pneumoniae are associated with increased morbidity and mortality. This study aimed to characterize the resistance and virulence profiles of extra-intestinal MDR ESBL-producing K. pneumoniae associated with infections at a tertiary hospital in South-Kivu province, DRC. Whole-genome sequencing (WGS) was carried out on 37 K. pneumoniae isolates displaying MDR and ESBL-producing phenotype. The assembled genomes were analysed for phylogeny, virulence factors and antimicrobial resistance genes (ARG) determinants. These isolates were compared to sub-Saharan counterparts. K. pneumoniae isolates displayed a high genetic variability with up to 16 sequence types (ST). AMR was widespread against β-lactamases (including third and fourth-generation cephalosporins, but not carbapenems), aminoglycosides, ciprofloxacin, tetracycline, erythromycin, nitrofurantoin, and cotrimoxazole. The blaCTX-M-15 gene was the most common β-lactamase gene among K. pneumoniae isolates. No carbapenemase gene was found. ARG for aminoglycosides, quinolones, phenicols, tetracyclines, sulfonamides, nitrofurantoin were widely distributed among the isolates. Nine isolates had the colistin-resistant R256G substitution in the pmrB efflux pump gene without displaying reduced susceptibility to colistin. Despite carrying virulence genes, none had hypervirulence genes. Our results highlight the genetic diversity of MDR ESBL-producing K. pneumoniae isolates and underscore the importance of monitoring simultaneously the evolution of phenotypic and genotypic AMR in Bukavu and DRC, while calling for caution in administering colistin and carbapenem to patients.
Read full abstract