The current work investigates the efficacy of acoustic cavitation (AC) based pretreatment as a process intensification method for improving the conventional biological oxidation (BO) treatment of the effluent from common effluent treatment plant (CETP) mainly containing pharmaceutical compounds. The effluent acclimatized with cow dung-based sludge was utilized for the aerobic oxidation with an optimum condition of 1:3 ratio of sludge to effluent and 6 h as duration. COD reduction of 19.58% was achieved with the conventional biological oxidation, which was demonstrated to be improved by incorporating acoustic cavitation-based pretreatment approaches under optimized conditions of 125 W and 70% duty cycle for only AC as well as oxidant loadings as 1000 mg/L for H2O2, 250 mg/L Fe(II) with 1000 mg/L H2O2 for Fenton, 1000 mg/L for KPS and 0.5 L/min for the O3 during the combination approaches. The improved COD reduction after the use of pretreatment approaches followed by the BO of 6 h duration was 29.26%, 72.42%, 85.47%, 45.68% and 69.26% for the AC, AC + H2O2, AC + Fenton, AC + KPS and AC + O3 based approaches respectively. The toxicity assay of the effluent before and after every pretreatment approach using bacterial strains ofStaphylococcus aureusandPseudomonas aeruginosaensured the biodegradability of the treated effluent as no toxic intermediates could be seen. Overall, the present work elucidated the effectiveness of acoustic cavitation-based pretreatment approaches for the improvement of conventional BO of CETP effluent.
Read full abstract