In the quest for new and increasingly efficient photon sources, the engineering of the photonic environment at the subwavelength scale is fundamental for controlling the properties of quantum emitters. A high refractive index particle can be exploited to enhance the optical properties of nearby emitters without decreasing their quantum efficiency, but the relatively modest Q-factors (Q ∼ 5-10) limit the local density of optical states (LDOS) amplification achievable. On the other hand, ultrahigh Q-factors (up to Q ∼ 109) have been reported for quasi-BIC modes in all-dielectric nanostructures. In the present work, we demonstrate that the combination of quasi-BIC modes with high spectral confinement and nanogaps with spacial confinement in silicon slotted nanoantennas lead to a significant boosting of the electromagnetic LDOS in the optically active region of the nanoantenna array. We observe an enhancement of up to 3 orders of magnitude in the photoluminescence intensity and 2 orders of magnitude in the decay rate of the Er3+ emission at room temperature and telecom wavelengths. Moreover, the nanoantenna directivity is increased, proving that strong beaming effects can be obtained when the emitted radiation couples to the high Q-factor modes. Finally, via tuning the nanoanntenna aspect ratio, a selective control of the Er3+ electric and magnetic radiative transitions can be obtained, keeping the quantum efficiency almost unitary.
Read full abstract