Spinel oxides have emerged as a promising candidate in the realm of nanozymes with variable oxidation states, while their limited active sites and low conductivity hinder further application. In this work, we synthesize a series of metal-doped NiCo2O4 nanospheres decorated with Pd, which are deployed as highly efficient nanozymes for the detection of cancer biomarkers. Through meticulous modulation of the molar ratio between NiCo2O4 and Pd, we orchestrated precise control over the oxygen vacancies and electronic structure within the nanozymes, a key factor in amplifying the catalytic prowess. Leveraging the superior H2O2 reduction catalytic properties of Fe-NiCo2O4@Pd, we have successfully implemented its application in the electrochemical detection of biomarkers, achieving unparalleled analytical performance, much higher than that of Pd/C and other reported nanozymes. This research paves the way for innovative electron modification strategies in the design of high-performance nanozymes, presenting a formidable tool for clinical diagnostic analyses.
Read full abstract