Abstract

Developing the efficient nanozymes for reactive oxygen species (ROS)-mediated highly potent tumor catalytic therapy has become a great challenge. In this study, we prepared the DNA-Fe, −FeAg, and −FeCuAg nanocluster (NCs) using the G-/C-rich single-stranded DNA (ssDNA) templates. The steady-state kinetic and the catalytic performances and mechanisms of DNA-metal NCs were first systematically investigated. The results indicated that c-kit-TBA-Fe, c-kit-TBA-FeAg, and c-kit-TBA-FeCuAg NCs exhibited the high peroxidase-like activity. All of three types of NCs presented the higher affinity to the substrate TMB and better storage stability at 4 °C than horseradish peroxidase (HRP). Moreover, c-kit-TBA-FeAg and c-kit-TBA-FeCuAg NCs presented the 6.7- and 4.7-fold stronger affinity to TMB than c-kit-TBA-Fe, respectively. However, the maximum reaction rate (Vmax) of c-kit-TBA-FeCuAg NCs with H2O2 was the largest, which promoted the generation of much more •OH in the reaction system. More importantly, c-kit-TBA-FeCuAg NCs were able to deplete largely the intracellular GSH and thus generate lots of endogenous ROS in HeLa cells, thereby exhibiting the significant and specific in vitro cancer cells toxicity. Therefore, c-kit-TBA-FeCuAg NCs, with peroxidase-like activity and glutathione (GSH) consumption ability, hold the ROS-based promising therapeutic effects for cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.