Background/Objectives: Sports-related bone fractures are a common challenge in sports medicine, requiring accurate and timely diagnosis to prevent long-term complications and enable effective treatment. Conventional diagnostic methods often rely on manual interpretation, which is prone to errors and inefficiencies, particularly for subtle and localized fractures. This study aims to develop a lightweight and efficient deep learning-based framework to improve the accuracy and computational efficiency of fracture detection, tailored to the needs of sports medicine. Methods: We proposed a novel fracture detection framework based on the DenseNet121 architecture, incorporating modifications to the initial convolutional block and final layers for optimized feature extraction. Additionally, a Canny edge detector was integrated to enhance the model ability to detect localized structural discontinuities. A custom-curated dataset of radiographic images focused on common sports-related fractures was used, with preprocessing techniques such as contrast enhancement, normalization, and data augmentation applied to ensure robust model performance. The model was evaluated against state-of-the-art methods using metrics such as accuracy, recall, precision, and computational complexity. Results: The proposed model achieved a state-of-the-art accuracy of 90.3%, surpassing benchmarks like ResNet-50, VGG-16, and EfficientNet-B0. It demonstrated superior sensitivity (recall: 0.89) and specificity (precision: 0.875) while maintaining the lowest computational complexity (FLOPs: 0.54 G, Params: 14.78 M). These results highlight its suitability for real-time clinical deployment. Conclusions: The proposed lightweight framework offers a scalable, accurate, and efficient solution for fracture detection, addressing critical challenges in sports medicine. By enabling rapid and reliable diagnostics, it has the potential to improve clinical workflows and outcomes for athletes. Future work will focus on expanding the model applications to other imaging modalities and fracture types.
Read full abstract