To fulfill diverse application-specific purposes, functional nanoparticles encapsulated into protein-based self-assemblies show promising advantages includes easy preparation, high biocompatibility and multiple properties. In this study, the model protein of BSA used for multi-component self-assembly, including hydrophobic Fe3O4 nanoparticles, nano-ZnO and curcumin, was constructed through hydrophobic interactions. The obtained composites of BSA-Fe3O4&ZnO and BSA-Fe3O4&ZnO&curcumin self-assemblies were tested for antibacterial and drug delivery, respectively. It was found that the multicomponents loaded into protein assembly confer a simple yet robust synthetic method resulting in the produced nanocomposites with high stability and desirable biocompatibility. Notably, the protein self-assemblies successfully increased the antibacterial efficacy of hydrophobic ZnO nanoparticles, and promote the intracellular delivery of poorly soluble curcumin to exert significant killing effects against cancer cells. Therefore, the constructed multi-component contained protein self-assembly that enables hydrophobic interactions of compositional nanoparticles holds promising potentials for the versatile uses in biomedical aspects.
Read full abstract