A novel control scheme for improving the power efficiency of low-voltage dc-dc converters for battery-powered, portable applications is presented. In such applications, light-load efficiency is crucial for extending battery life, since mobile devices operate in stand-by mode for most of the time. The proposed technique adaptively reduces the inductor current ripple with decreasing load current while soft switching the converter to also reduce switching losses, thereby significantly improving light-load efficiency and therefore extending the operation life of battery-powered devices. A load-dependent, mode-hopping strategy is employed to maintain high efficiency over a wide load range. Hysteretic (sliding-mode) control with user programmable hysteresis is implemented to adaptively regulate the current ripple and therefore optimize conduction and switching losses. Experimental results show that for a 1-A, 5- to 1.8-V buck regulator, the proposed technique achieved 5% power efficiency improvement (from 72% to 77%) at 100 mA of load current and a 1.5% improvement (from 84% to 85.5%) at 300 mA, which constitute light-load efficiency improvements, when compared to the best reported, state-of-the-art techniques. As a result, the battery life in a typical digital signal processing microprocessor application is improved by 7%, which demonstrates the effectiveness of the proposed solution.