An off-the-shelf Agilent 7100 capillary electrophoresis (CE) instrument was employed for the automated processing and analysis of dried blood spots (DBSs) collected by Capitainer®B volumetric devices. Solutions for DBS elutions were transferred directly into CE vials through a separation capillary by the application of an auxiliary nitrogen gas connected to the external pressure line of the CE instrument. This allowed for liquid handling at pressures up to 15 bar and enabled the use of a single capillary for rapid DBS processing and efficient CE separations. The resulting DBS eluates were at-line injected into a short capillary end, which served for improved instrumental simplicity and short CE analysis times. The current set-up necessitated neither hardware nor software adjustments of the CE instrument, except for the connection of a gas cylinder to an in-built connector. The novel features presented in this study (DBSs with exact blood volumes, high external pressures, and short-end injections) were used for the automated determination of clinically relevant markers, phenylalanine (Phe) and tyrosine (Tyr), in DBS samples. Sensitive and selective Phe and Tyr quantification was achieved by CE-UV in 375 mM formic acid and 0.01 % (v/v) Tween 20 (pH 2.09) as a background electrolyte. The total processing and analysis times per one DBS were <1.5 and 4.5 min, respectively, in a sequence of 36 DBSs, and resulted in a sample throughput of >10 DBSs per hour. The intra- and inter-day repeatability values were better than 5.9 and 1.1 % RSD for peak areas and migration times, respectively, and calibration curves were linear in the 20–3000 μM (Phe) and 20–250 μM (Tyr) range (R2 ≥ 0.9973). The limits of detection were ≤2 μM and enabled the determination of endogenous Phe and Tyr concentrations as well as elevated Phe concentrations and Phe/Tyr ratios, which are the typical markers for neonatal phenylketonuria screening.
Read full abstract