In recent years, the advancement of solar cell technology is increased by leaps and bounds and it is also used to achieve a solution for the worldwide huge need for generation of energy and electricity. The colloidal quantum dot (CQD) offers a size-tuned bandgap and materials processing compatibility with a range of substrates. QDSC (Quantum dot solar cell) have advantages such as low cost, high efficiency, and replaces bulky material (Cadmium Selenide, Lead Selenide etc over traditional solar cell. “Despite these advantages, it lags due to carrier recombination in the Quasi-Neutral Region (QNR). The performance of the solar cell greatly depends on the electron transport layer (ETL) and hole transport layer (HTL). To investigate the feasibility of a highperformance device, a comparative investigation of the PbS-EDT and Spiro-OMeTAD hole transport layers has been done. For this, we have varied the various parameters upon which performance of solar cells is dependent in order to maximise the performance. All simulations study has been performed using SCAPS-1D simulator. The overall maximum optimized performance of the photovoltaic solar cell of 16.29% is obtained using TiO2 and PbS-TBAI(tetrabutylammonium iodide) as a ETL and absorber layer respectively. Our research demonstrates that an efficient quantum dot solar cell could be fabricated experimentally using the optimal device structure.