This paper aims to comprehensively explore the performance and influencing factors of the constructed wetland–microbial fuel cell (CW-MFC) system when treating brine with different concentrations. The main objective is to determine how different salinity levels affect the operation and treatment efficiency of the CW-MFC system. The research results show that Bruguiera gymnorrhiza exhibits strong salt tolerance and can be used as a wetland plant for the CW-MFC system. The closed-circuit CW-MFC system with planted plants has the best performance, with a chemical oxygen demand (COD) removal rate of 84.8%, a total nitrogen (TN) removal rate of 68.12%, and a chloride ion (Cl−) removal rate of 29.96%. The maximum power density is 64.79% higher than that of the system without planted plants. The power generation performance of the system first increases and then decreases with the increase in salinity, while the internal resistance keeps decreasing. When the salinity is 2%, the power generation effect is the best, with an average output voltage of 617.3 ± 25.7 mV and a power density of 45.83 mW/m2. The removal rates of COD and TN are inhibited with the increase in salinity, while the removal rate of total phosphorus (TP) is not significantly affected. The microbial community grows well under salt stress, but its structure is different. When the salinity is 1%, the optimal distance between electrodes is 10 cm. Considering the pollutant removal performance, the optimal hydraulic retention time is 3 days, and considering the power generation performance, the optimal hydraulic retention time is 2 days. This research provides important value for improving the performance of the CW-MFC system in treating brine.
Read full abstract