Herein, amino functionalized Zr-based metal organic framework (UiO-66-NH2) on carbon cloth substrate was synthesized by using one-step hot-pressing method and the product (UiO-NH2@CC) was evaluated as a new solid phase extraction (SPE) material for determination and speciation of inorganic arsenic species (As(V) and As(III)) in water samples through energy dispersive X-ray fluorescence (EDXRF) spectrometry. SPE efficiency of UiO-NH2@CC was examined in batch and continuous adsorption (pre-concentration) processes and combination of either batch or continuous pre-concentration process with EDXRF spectrometry proposed analytical method, offering remarkable benefits (i.e., user-friendly, no elution procedure, environmentally friendly and cost-effective, etc.). Batch adsorption studies indicated that As(V) could be selectively adsorbed by UiO-NH2@CC at pH 2 and better represented by Freundlich isotherm model in 60 min of equilibrium time. Continuous adsorption studies at pH 2 demonstrated a drop in As(V) adsorption efficiency of UiO-NH2@CC for sample loading volume above 30 mL with increasing flow rate from 0.3 to 1.0 mL/min and initial As(V) concentration from 20 to 100 µg/L. By considering fortification experiments on real water samples at two levels (5 and 50 µg/L) of As(V) species, both batch and continuous pre-concentration steps coupled with EDXRF spectrometry, with LOD values of 0.790 and 0.220 µg/L, respectively, indicated good recoveries in the range of 87(±11)–104(±7) with no statistically significant differences. Finally, the continuous pre-concentration step followed by EDXRF measurement, as a representative analytical method, was of successful applicability to the speciation of As(III) and As(V) in real water samples with notable advantages (i.e., effortless, economical, practical and reproducible, etc.).