Abstract

Herein, amino functionalized Zr-based metal organic framework (UiO-66-NH2) on carbon cloth substrate was synthesized by using one-step hot-pressing method and the product (UiO-NH2@CC) was evaluated as a new solid phase extraction (SPE) material for determination and speciation of inorganic arsenic species (As(V) and As(III)) in water samples through energy dispersive X-ray fluorescence (EDXRF) spectrometry. SPE efficiency of UiO-NH2@CC was examined in batch and continuous adsorption (pre-concentration) processes and combination of either batch or continuous pre-concentration process with EDXRF spectrometry proposed analytical method, offering remarkable benefits (i.e., user-friendly, no elution procedure, environmentally friendly and cost-effective, etc.). Batch adsorption studies indicated that As(V) could be selectively adsorbed by UiO-NH2@CC at pH 2 and better represented by Freundlich isotherm model in 60 min of equilibrium time. Continuous adsorption studies at pH 2 demonstrated a drop in As(V) adsorption efficiency of UiO-NH2@CC for sample loading volume above 30 mL with increasing flow rate from 0.3 to 1.0 mL/min and initial As(V) concentration from 20 to 100 µg/L. By considering fortification experiments on real water samples at two levels (5 and 50 µg/L) of As(V) species, both batch and continuous pre-concentration steps coupled with EDXRF spectrometry, with LOD values of 0.790 and 0.220 µg/L, respectively, indicated good recoveries in the range of 87(±11)–104(±7) with no statistically significant differences. Finally, the continuous pre-concentration step followed by EDXRF measurement, as a representative analytical method, was of successful applicability to the speciation of As(III) and As(V) in real water samples with notable advantages (i.e., effortless, economical, practical and reproducible, etc.).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.