Simultaneous monitoring of key metabolites like dopamine, ascorbic acid, and uric acid is essential for early disease diagnosis and evaluating treatment. Electrochemical techniques are increasingly used for precise, point-of-care testing (POCT) of these metabolites. Herein, a sample pretreatment method called effervescent solid-phase extraction (ESPE) was proposed for efficient enrichment of trace analytes for electrochemical detection. In an ESPE process, effervescent tablets made of gold nanoparticle-decorated graphene oxide (Au/GO) were first self-dispersed in a test solution to promote the enrichment of analytes on the Au/GO adsorbents, followed by the addition of flocculant effervescent tablets to cause Au/GO sheets to form self-assembled aggregates, which then can be efficiently collected by the foam electrodes. The entire sample pretreatment process operates without external power and takes only 5 min. With the assistance of the ESPE method, our electrochemical sensors achieve an ultralow detection limit for dopamine, ascorbic acid, and uric acid of 80 pM, 1.8 nM, and 460 pM, respectively, which are two to three orders of magnitude lower than the results obtained by the drop casting technique. The enhancement mechanism of our approach is based on increasing the contact probability with analytes through dynamic dispersion of the Au/GO adsorbents, in contrast to the static diffusion mechanism relied on Brownian motion. We also show that combining the ESPE solution kit with a portable micro-electrochemical workstation can attain the same detection level as HPLC in real urine samples. The proposed ESPE approach holds great promise for POCT applications in 2D material-based biosensors.