Efficiently mixed conduction between ionic and electronic charges stands to revolutionize the studies in organic electrochemical transistors (OECTs). However, inefficient ion transport due to the long-range injection and migration process in the bulk film presents challenges for enhancing the steady and transient performance of OECTs. In this work, we proposed a lateral intercalation-assisted ion transport strategy to assist volumetric ion charging, by introducing a striped microstructure in the conductive channel. By precisely adjusting the ratio of lateral area (RoL), the electrical performance, indicated by the maximum transconductance versus response time (Gm,max/τ), increases progressively by over 600%. We further unveiled the mechanism for the enhanced doping uniformity and increased volume capacitance at the lateral area. Based on the universality investigation, we uncovered the effects of molecular stacking on ionic lateral intercalation transport, contributing to the high-performance OECTs and the bio-applications in the recording of dynamic electrocardiography (ECG) signals with distinct features.
Read full abstract