Portland, OR, was the first US city to implement a deconstruction ordinance in 2016. Although salvaged lumber can have a high demand, the market for small-sized lumber from deconstructed dwellings is near saturation. New applications for this material are required for market development, industry diversification, and increasing deconstruction practices. Mass timber products such as cross-laminated timber (CLT) could be a new market for this material, but presently there is minimal information qualifying the performance of mass timber panels made with salvaged lumber. Three, full-sized 3-ply experimental layups, with varying amounts of salvaged/recycled wood content, were manufactured and tested to characterize panel properties. Manufacturing processes and testing methods followed ANSI/APA PRG 320-2018; Standard for Performance Rated Cross-Laminated Timber. Each panel layup had three replicates for nine panels in total. Panels measured 1.1 m by 2.3 m by 3 plys, and test results were used to calculate the effective flatwise bending moment resistance ((FbS)eff), effective flatwise bending stiffness ((EI)eff) effective shear stiffness in flatwise bending ((GA)eff), flatwise shear resistance (Vs), percent wood failure (WF%), and percent delamination (Delamination %). Results were compared with E3 grade 3-ply CLT panels made in the United States and indicated that salvaged lumber could be used as feedstock for mass timber panels in core layers or all layers. All panel layups passed benchmarks for (FbS)eff and (EI)eff benchmarks with values greater than PRG320. Panels having salvaged lumber in core layer also met Vs benchmarks. Furthermore, all panels passed examination for WF% but struggled to meet delamination requirements. Possibilities exist for better performance if panels were made in a commercial setting. This research shows salvaged lumber has promise for manufacturing structural CLT, but more research and a larger samples size is needed to verify findings.
Read full abstract