A phase unwrapping method is developed to mathematically increase the depth-of-field for the 3D optical measurement of objects with laterally discontinuous surfaces, which contain disconnected high aspect ratio regions. This method is applied for laser holographic interferometry precision measurements. The phase wrap identification at boundary pixels, masking and recovery, dynamic segmentation and phase adjustment are developed to overcome the divergence problem in phase unwrapping of laterally discontinuous surfaces. An automotive automatic transmission valve body is applied as an example to demonstrate the developed method. Experimental results demonstrate that the proposed methods can efficiently unwrap the phase to increase the depth-of-field for laterally discontinuous surfaces. Effects of segment size and width of overlapped regions on the computational efficiency are investigated.
Read full abstract