American mayapple (Podophyllum peltatum L.) is a rhizomatous, herbaceous perennial found in wooded areas of eastern North America and is a source of the pharmaceutical compound podophyllotoxin. This research was conducted to determine the optimum duration of low temperature exposure in overcoming dormancy of fall-harvested rhizome segments for subsequent use as propagules in greenhouse plantings. Two types of rhizome segments were harvested from the wild and used in this study: two-node rhizome segments consisting of a terminal node and its adjacent one-year-old node and one-node rhizome segments consisting of a single node, other than a terminal node, of unknown age or rhizome position. For growth cycle I, rhizome segments were exposed to low temperature (≈4 °C) for 30, 45, 60, 75, or 90 days, planted in pots, and grown in a greenhouse set at 21 °C. Shoot emergence, shoots per pot, and plant height were recorded. Leaves were removed from plants when senescence first became evident, and leaf area was recorded. For growth cycle II, rhizome segments remained undisturbed in the original pots and were exposed to low temperatures (≈4 °C) for 90 days. Pots were again placed in the greenhouse and shoot emergence, shoots per pot, plant height, and leaf area were recorded. Increasing duration of low temperature exposure of rhizome segments up to 75 days appeared to increase percent emergence and plant height and decrease days to emergence, though changes in greenhouse conditions over the study period may have also influenced shoot emergence and plant growth. Two-node rhizome segments exhibited higher percent shoot emergence, shoot longevity, leaf area, and plant height than single-node segments during each growth cycle. Two-node rhizome segments also exhibited fewer days to emergence during growth cycle I. Rhizome segments produced no more than a single shoot in growth cycle I, whereas more than one shoot was produced in growth cycle II. Most of the effects of low temperature exposure during growth cycle I persisted throughout growth cycle II. These results indicate that dormancy of mayapple rhizomes can be overcome with low temperature exposure and shoots can be induced to grow at any time of year.
Read full abstract