Environmental regulations governing industrial activities in tundra environments stem largely from the expected ecological effects of the activities. One of the major ecological effects of industrial activities is the surface subsidence associated with thermokarst, which can result in changes in primary and secondary production. The primary production changes associated with thermokarst are strongly governed by three ecosystem properties—soil temperature, water regime, and nutrient availability. Most disturbances set in motion a more-or-less predictable sequence of landscape change related to these properties: soil warming, thermokarst, surface flooding, accelerated organic matter decomposition, and increased nutrient availability. The warmed soil and the enhanced nutrient availability typically lead to increased annual primary production, increased dominance by graminoids, and reduced plant species diversity. These vegetational changes may in turn potentially enhance secondary production, but in general these second-level responses have yet to be quantified. More information is needed about the food-chain effects of tundra landscape disturbances before regulators can make well-informed predictions of impacts or plan useful habitat rehabilitation.
Read full abstract