Objective: To investigate the antiallodynic effect of Hyperbaric oxygen treat-ment (HBOT) on paclitaxel (PTX)-induced peripheral neuropathy in a model of rat and the influence on Astrocyte activation-Inflammatory pathway. Method: 45 male Sprague-Dawley rats were equally divided into 3 groups, the Control group (Control), the Model group (PTX), the Therapy group (PTX HBOT). Except for the Control group, all groups were intraperitoneally injected with paclitaxel 2 mg/kg on day 1, 3, 5, 7, respectively, and a stable peripheral neuralgia model was established on the 14th day. The Therapy group was treated with HBOT on 2.5 ATA for 7 days after modeling. We used the UP and Down method to test the mechanical withdraw threshold (MWT) of rats before and after modeling, during and after treatment. One week after the end of treatment, each group of rats was taken spinal cord L4-L6 for subsequent molecular biology experiments. The expression and location of astrocyte activation marker GFAP in spinal cord were assayed by Immunohistochemistry. The expression of GFAP, TNF-α, IL-1β was assayed by western blot analysis. The expression of mRNA of GFAP, TNF-α, IL-1β was assayed by realtime-RT PCR. Results: On the nineteenth day of the experiment (the fifth day of treatment), the MWT of Treatment group was significantly higher than that of Model group (p < 0.001). This effect persisted for one week after the end of treatment (day 21 - 28, p < 0.001). Immunohistochemistry showed that the expression of GFAP was significantly lower in Treatment group than in Model group (p < 0.01). Western Blot Analysis showed that the expression of GFAP, IL-1β, TNF-α was significantly lower in Treatment group than in Model group (p < 0.05, p < 0.01, p < 0.01). Realtime-RT PCR showed that the expression of mRNA levels of GFAP was slightly higher in Model group than in Control group (p = 0.0467), but there was no statistical difference between the two groups. The expression of mRNA of IL-1β, TNF-α was significantly lower in Treatment group than in Model group (p < 0.01, p < 0.01). Conclusion: Hyperbaric oxygen treatment alleviates paclitaxel-induced peripheral neuralgia which has a long-term therapeutic effect, and inhibits the activation of spinal astrocytes and the level of in-flammatory cytokines for neuroinflammation.
Read full abstract