In view of the current serious situation of organophosphorus pesticides (OPs) residue contamination, developing rapid and accurate OPs sensors is a matter of urgency. Redox-nanozyme based colorimetric sensors have been widely researched and utilized in OPs residue determination, but overcoming the interference of external redox substances and the effect of single-signal modes on detection performance is still a challenge. Here we fabricated a Zr-based metal–organic framework (MOF) featuring specific phosphatase-like activity and strong aggregation-induced emission (AIE) fluorescence for redox interference-free bimodal pesticide sensing. In the MOF, the activity-tunable Zr4+ node offered high hydrolytic activity and affinity toward P–O containing substrates, and the rigid framework structure effectively enhanced the fluorescence emission of the ligand 1,1,2,2-tetra(4-carboxylphenyl)ethylene. The developed AIEzyme could efficiently catalyze the hydrolysis of paraoxon to yellow p-nitrophenol, which further reduced the intrinsic AIE fluorescence of AIEzyme through internal filtration effect. Thereby, a natural enzyme-free dual-mode colorimetric/fluorescence approach was established for paraoxon detection with no interference from redox substances, and a smartphone-assisted portable platform was further developed to enable the facile, rapid, and high-performance sensing of the pesticide in complex practical matrices.