Zirconia (ZrO2) is a versatile material with applications in various fields due to its exceptional mechanical strength, thermal stability, and chemical resistance. In recent years, interest has surged in utilizing doped ZrO2 as photocatalysts. This study investigates the electronic properties of ZrO2 upon doping with non-metal elements sulfur (S), selenium (Se), and tellurium (Te) using first-principle calculations. The effects of different doping concentrations on the band structure and density of states (DOS) have been examined. Calculations using GGA show significant reductions in the band gap upon doping, indicating potential for improved optoelectronic performance. Specifically, using accurate DFT + U approach we found that doping ZrO2 with 25 % S led to a band gap reduction from 5.4 eV to 1.2 eV, demonstrating promising result for photovoltaic applications. This study provides valuable insights into the electronic properties of doped ZrO2 (ZrO2-xQx, Q = S, Se and Te, x = 0.25, 0.5 and 2) paving the way for tailored applications in various technological domains.
Read full abstract