Atmospheric aerosol radiative effects regulate surface air pollution (O3 and PM2.5) via both the aerosol–photolysis effect (APE) and the aerosol–radiation feedback (ARF) on meteorology. Here, we elucidate the roles of APE and ARF on surface O3 and PM2.5 in the heavily polluted megacity, Delhi, India by using a regional model (WRF-Chem) with constraints from limited surface observations. While APE reduces surface O3 (by 6.1%) and PM2.5 concentrations (by 2.4% via impeding the secondary aerosol formations), ARF contributes to a 2.5% and 17.5% increase in surface O3 and PM2.5, respectively. The ARF from smoke enhances PM2.5 (by 8%), black carbon (by 10%), and primary organic aerosol (by 18%) during late autumn when crop residue burning is significant. The synergistic APE and ARF have a negligible impact on the total concentrations of O3 and PM2.5. Hence, the reduction of PM2.5 may lead to O3 escalation due to weakened APE. Sensitivity experiments indicate the need and effectiveness of reducing VOC emission for the co-benefits of mitigating both O3 and PM2.5 concentrations in Delhi.