This study investigated the effects of ultrasound treatment on the quality of salted Culter alburnus fish. The results showed that with the increasing ultrasound power, the structural degradation of muscle fibers was intensified, and the conformation of myofibrillar protein was significantly changed. The high-power ultrasound treatment group (300 W) had relatively higher thiobarbiturate reactive substance content (0.37 mg malondialdehyde eq/kg) and peroxidation value (0.63 mmol/kg). A total of 66 volatile compounds were identified with obvious differences among groups. The 200 W ultrasound group exhibited fewer fishy substances (Hexanal, 1-Pentene-3-ol, and 1-Octane-3-ol). Compared with control group, ultrasound groups (200, 300 W) contained more umami taste-related amino peptides such as γ-Glu-Met, γ-Glu-Ala, and Asn-pro. In the ultrasound treatment group, L-isoleucine and L-methionine, which may be used as flavor precursors, were significantly down-regulated, while carbohydrates and its metabolites were up-regulated. Amino acid, carbohydrate, and FA (fatty acyls) metabolism products in salted fish were enriched by ultrasound treatment, and those products might ultimately be related to the taste and flavor of salted fish.