Norfloxacin (NOR) and levofloxacin (LEV) are the two most frequently used fluoroquinolones (FQs) in clinic. Their residues seriously endanger the ecosystem and human health. Due to their similarity in structure and properties, it is urgent to develop an efficient and sensitive strategy for detection and differentiation. Herein, we synthesized a novel ratiometric fluorescent sensor for the first time by combining N, S co-doped carbon dots (CDs) and the precursors of Tb-MOFs through a facile one-pot method. The introduction of CDs effectively facilitated the energy transfer between Tb3+ and FQs, overcoming the limitation that single Tb-MOFs could not identify similar antibiotics. Specifically, the presence of NOR resulted in reverse signal response through the inner filter effect and antenna effect. The synergistic effect of these two mechanisms contributed to achieving signal amplification accompanied by a distinguishable color transition. The limit of detection (LOD) was 0.036 μM. Different from NOR, the addition of LEV reduced the electron density of the system, weakened the coordination ability of Tb3+ with LEV, and induced a single signal response with Tb3+ fluorescence intensity as a reference signal (LOD = 0.383 μM). Furthermore, the method proved to be rapid and visual, allowing for the straightforward analysis of FQs residues in water, food matrices, and biological samples with satisfactory precision. By integrating N, S-CDs@Tb-MOFs with flexible substrates, the paper-based sensor facilitated the visual quantitative determination of FQs by reading RGB values. The developed sensor presents a promising strategy for the identification and real-time monitoring of antibiotics.
Read full abstract