Thermal energy storage (TES) using phase change materials (PCMs) is one of the potential solutions for stockpiling thermal energy and utilizing it for different applications, which results in effective energy usage. The main drawback of organic PCMs in practical applications is poor heat transfer due to low thermal conductivity (TC). Therefore, investigations into nano-enhanced PCMs are being explored to improve their thermophysical properties. In this work, the various thermophysical characteristics of nano-enhanced lauryl alcohol as a PCM were investigated using carbon-based and metallic nanoparticles. The results indicated that the addition of nanoparticles improved its thermal properties and affected other physical properties, such as viscosity. The latent heat was degraded with the addition of nanoparticles. The results revealed that by adding MWCNTs and CuO nanoparticles, a maximum of 82.6% and 49.6% improvement in TC was achieved, respectively. The maximum drop in latent heat during melting and freezing for the PCM with MWCNTs was about 10.1% and 9.3%, respectively, whereas for the PCM with CuO, they were about 11% and 10.3%, respectively. The lowest supercooling for the PCM with MWCNTs and CuO nanoparticles was 8.6 and 8.3 °C, respectively. The present work confirms that nano-enhanced PCMs can be a potential material for storing thermal energy for various applications.
Read full abstract