Consistent theories to describe damage processes are generally presented within the framework of effective stress and internal parameters. It is well known that damage is concerned with the progressive deterioration of elastic properties due to microscopic defects, such microvoids or microcracks. In the framework of Continuum Mechanics, damage is related to irreversible changes (on the microlevel) of small vicinities surrounding material points in the body. So a convenient definition of these small vicinities, named “representative material element”, will be recalled in Part 1, and application will be made to elastoplasticity in Part 2. In the subsequent parts, a fictitious suitable undamaged elastoplastic body accompanying the real damaged one is introduced in order to define the effective stress in the framework of large strains and its use in the construction of damaged elasticity law. Finally application is made to infinitesimal strains that concern most of the examples in literature. Due to limitation of place, plasticity coupled with damage is not considered in this paper.
Read full abstract