Digital deblurring of images is an important problem that arises in multifrequency observations of the Cosmic Microwave Background (CMB) where, because of the width of the point spread functions (PSF), maps at different frequencies suffer a different loss of spatial resolution. Deblurring is useful for various reasons: first, it helps to restore high frequency components lost through the smoothing effect of the instrument's PSF; second, emissions at various frequencies observed with different resolutions can be better studied on a comparable resolution; third, some map-based component separation algorithms require maps with similar level of degradation. Because of computational efficiency, deblurring is usually done in the frequency domain. But this approach has some limitations as it requires spatial invariance of the PSF, stationarity of the noise, and is not flexible in the selection of more appropriate boundary conditions. Deblurring in real space is more flexible but usually not used because of its high computational cost. In this paper (the first in a series on the subject) we present new algorithms that allow the use of real space deblurring techniques even for very large images. In particular, we consider the use of Tikhonov deblurring of noisy maps with applications to {\it PLANCK}. We provide details for efficient implementations of the algorithms. Their performance is tested on Gaussian and non-Gaussian simulated CMB maps, and PSFs with both circular and elliptical symmetry. Matlab code is made available.