The gas-condensate flow in the near-well region is significantly influenced by phase behavior, flow regimes, and pore geometries. In conventional gas-condensate reservoirs the key pore-scale parameters affecting gas and condensate relative permeabilities include velocity (i.e., pressure gradient), interfacial tension (IFT), wettability, and pore structure. To examine the impact of these parameters, three-dimensional (3D) and two-dimensional (2D) pore-network models (PNMs) were developed. A proposed compositional model was used to implement the cyclic process of condensate corner flow (film flow for circular tubes) and condensate blockage. Response surface methodology (RSM) was employed to achieve high accuracy in phase equilibrium calculations and to enhance computational speed.The 3D PNM simulations of gas-condensate core-flood experiments confirmed the consistency and accuracy of the implemented methodology. A parametric study of governing factors such as pore shapes, wettability, IFT, and flow rate was conducted using the developed PNMs. The findings revealed that pore geometry and contact angle dictate the condensate meniscus curvature and snap-off process in pore throats. The unblocking of throats by condensate bridges was primarily controlled by contact angle, IFT, and pore cross-section. A shift to neutral wetting substantially improved gas-condensate flow in higher IFTs and angular pore shapes.The positive velocity effect on low-IFT gas-condensate flow, known as the coupling rate effect, was more pronounced in simulations with lower contact angles, and its impact was negligible at neutral wettability, similar to the IFT effect. The simulation results and findings underscore the influence of each factor and offer a method for incorporating the effects of pore shape (i.e., formation type and structure), contact angle, velocity, and IFT in continuum scale simulations.
Read full abstract