Pregnenolone (P), the main precursor of the steroids, and its sulfate ester, pregnenolone sulfate (PS), are the major neurosteroids produced in the neural tissue. Many neuroendocrinological studies stressed the neuroprotective role of neurosteroids although it has been suggested that the inhibition of P and PS synthesis can delay neuronal cell death. The potential roles of P and PS in vital neuronal functions and in amyloid beta peptide (Aβ) toxicity are not clearly identified. This work aims to investigate the effects of P and PS on cell viability and Aβ peptide toxicity in a concentration and exposure time-dependent manner in rat PC-12 cells. The cells were treated with 20 μM Aβ peptide 25–35 and variable concentrations of P and PS ranging from 0.5 μM to 100 μM. To examine the effects of steroid treatment on Aβ peptide toxicity, 0.5 μM (low) and 50 μM (high) neurosteroids were used. The cell viability and lactate dehydrogenase release of cells were evaluated after 24, 48 and 72 h. Morphological changes of cells were also examined. The treatment with higher than 1 μM concentrations of P and PS significantly decreased the cell viability comparing to untreated cells. At lower concentrations, P and PS had no toxic actions until 72 h. The Aβ treatment resulted in a significant decrease in cell viability comparing to untreated cells. P showed a dose-dependent protective effect against Aβ peptide in PC-12 cells. But its sulfate ester did not have the same effect on Aβ peptide toxicity, even it significantly decreased cell viability in Aβ-treated cells. Consequently, the discrepant effects of P and PS on Aβ peptide toxicity may provide insight on the pathogenesis of Alzheimer’s disease.
Read full abstract