Effective binary diffusion coefficients of Si during the interdiffusion of hydrous, 3 and 6% H2O, dacitic and rhyolitic melts have been determined at 1.0 GPa, 1100°–1400°C. Water is shown to enhance diffusivities by one to two orders of magnitude above dry Si diffusivities in the same compositional system for SiO2 compositions 65–75wt%. The effect of silica content on diffusion is small and typically within experimental error. With 3% H2O in the melts the Arrhenius equation for Si diffusion at 70% SiO2 is: $${\text{D = }}2.583\operatorname{x} 10^{ - {\text{ }}8} {\text{ }}\exp ( - 126.5/R{\text{T}})$$ where D is the diffusivity in m2/s, the activation energy (126.5) is in kJ/mol, R is in J/mol and T in Kelvin. Although less-well constrained, the Si diffusivity at 70% SiO2 with 6% H2O in the melts can be described by: $${\text{D = }}2.692\operatorname{x} 10^{ - {\text{ }}7} {\text{ }}\exp ( - 131.4/R{\text{T}})$$ The activation energies for diffusion are substantially below the activation energy of 236.4kJ/mol measured during anhydrous interdiffusion in the same system (Baker 1990). The decrease in activation energy with the initial addition of 3% water and the relative insensitivity of the activation energy to the additional water is related to the abundance of OH species in the melt, and the reduction of (Si,Al)-O bond strengths due to the interaction of hydroxyls with the (Si,Al)-O network. Changes in the pre-exponential factor of Arrhenius equations are attributed to the abundance of H2O species in the melts. No decoupling of non-alkalies from SiO2 during interdiffusion of the two melts was observed, although alkalies diffuse much more rapidly than non-alkalies (but were not measured quantitatively in this study) and can become decoupled. Interdiffusion of Si and all non-alkalies is demonstrated to be predictable, at least to within a factor of ten, by the Eyring equation. Using the diffusion data of this study for nonalkalies and of other studies for alkalies and Sr isotopes the contamination of a host rhyolitic magma by dacitic enclaves, 5 and 50 cm radius, has been modeled for temperatures of 1000°, 900°, and 800° C with water contents of 3 and 6%. Even when the effects of phenocrysts on diffusion in the dacitic enclaves are estimated the results of the modeling demonstrate that significant contamination is possible in the case of small enclaves, and even large enclaves have the potential to affect the composition of their host magma in geologically short times.