Joint contracture is a common clinical problem affecting joint function. Capsule fibrosis plays a pivotal role in the progression of Joint contracture. Previous studies have reported that autophagy plays a regulatory role in visceral fibrosis. This study aimed to investigate whether extracorporeal shock wave therapy (ESWT) and melatonin alleviate joint capsule fibrosis in rats with extended knee joint contracture by regulating autophagy. A rat knee joint extension contracture model was made. Then, the rats were treated with ESWT, melatonin, ESWT + melatonin, or ESWT + melatonin + mTOR agonist for 4 weeks. The range of motion (ROM) of the knee joints was measured. Joint capsules were collected and observed for pathological changes by H&E and Masson staining. LC3B protein expression was evaluated by immunofluorescence staining. TGF-β1, MMP-1, Col-Ⅰ, Col-Ⅲ, LC3, ATG7, Beclin1, p-AMPK, p-mTOR and p-ULK1 protein expressions were measured by Western blot assay. The intervention groups had significantly improved ROM of knee joint (P < 0.05), significantly improved pathological changes on HE and Masson staining, significantly decreased protein expressions of TGF-β1, MMP-1, Col-Ⅰ, Col-Ⅲ and pmTOR (P < 0.05), and significantly increased protein expressions of LC3B, LC3II/LC3I ratio, ATG7, Beclin1, p-AMPK, and p-ULK1 (P < 0.05). Among these groups, the effects demonstrated by the ESWT + melatonin group were the best. With the mTOR agonist supplement, the therapeutic effects of extracorporeal shock waves and melatonin were significantly reduced. ESWT plus melatonin alleviated knee joint capsule fibrosis in rats by regulating autophagy.
Read full abstract