In several studies it has been found that implicit sequence learning is impaired by the concurrent performance of a secondary task. In most studies the task was to count high-pitched tones when high-pitched and low-pitched tones were presented in a random sequence. In this paper the hypothesis is examined that dual-task interference in the particular combination of tasks results from task integration, in particular from the learning of an integrated visual-auditory sequence in which every second (auditory) element is random. Instead of the tone-counting task a similar go/no-go task was used in which foot responses to high-pitched tones were performed. In Exp. 1 the sequence of tones was random in one condition, but in two other conditions repeated tone sequences of 5 and 6 elements were combined with visual sequences of 6 elements. Under dual-task test conditions, implicit learning of the visual as well as the auditory sequences was better with the auditory sequence of 6 elements than of 5 elements, while under single-task test conditions the nature of the tone sequence had no effect. In Exp. 2 the superior implicit learning with the 6-element sequence was replicated with different test procedures in which either the visual or auditory sequence was changed to random or in which the two sequences remained intact but were shifted by one element relative to each other. Randomization of the visual or auditory sequences not only impaired visual or auditory RT, respectively, but also impaired RT to stimuli in the other modality, and this cross-modal effect was almost as strong as the intra-modal effect of randomization. Finally, in Exp. 3 it was shown that integrated visual-auditory sequences are learned only when responses to both of them are required, but not when the tones can be neglected. These results are consistent with a conception of implicit learning as (at least partly) a basic and nonselective type of learning of all potentially behaviorally relevant relations between stimuli in the environment and one's own actions.
Read full abstract