Purpose. Vehicle and occupant responses in rollovers are complex since many factors influence both. This study analyzes the following factors: 1) belt use, 2) seated position with respect to the lead side in the rollover, 3) another front occupant in the crash, and 4) number of quarter rolls. The aim was to improve our understanding of rollover injury mechanisms. Method. Rollover accidents were analyzed using 1992–2004 NASS-CDS data. The sample included adult drivers and right-front passengers. All occupants were evaluated and then a subset of non-ejected occupants was analyzed. Using roll direction and seating position, the sample was divided into near- and far-seated occupants. Injury and fatality risks were determined by seatbelt use, occupancy, rollover direction, and number of quarter rolls. Risk was defined as the number of injured (e.g., MAIS 3+) divided by the number of exposed occupants (MAIS 0-6). Significance in differences was determined. A matched-pair analysis was used to determine the risk of serious injury for near- and far-seated occupants who were either belted or unbelted in the same crash. Results. For all occupants, serious injury risks were highest for far-seated, unbelted occupants at 18.1% ± 4.8%, followed by near-seated unbelted occupants at 12.0% ± 3.5%. However, the difference was not statistically significant. Belted near- and far-seated occupants had a similar injury risk of 4.3% ± 1.2% and 4.0% ± 1.2%, respectively. For non-ejected occupants, serious injury risk was 9.5% ± 3.2% for far-seated unbelted occupants and 4.9% ± 2.1% for near-seated unbelted occupants, not a statistically significant difference. Serious injury risk was similar for belted near- and far-seated non-ejected occupants, at 3.6% ± 1.1%. Seatbelts were 64.2%–77.9% effective in preventing serious injury for all occupants and 62.1%–26.5% for far- and near-seated, non-ejected occupants, respectively. Based on the matched pairs, seatbelts were less effective for near-seated (5.0%) compared to far-seated (2.8%) occupant MAIS 3+F risks. This was similar for non-ejected occupants. An unbelted near-seated occupant increased the risk for a belted far-seated occupant by 2.2 times, whereas an unbelted far-seated occupant increased the risk for a belted near-seated occupant by 10.2 times. For all occupants, the risk of serious injury increased with the number of quarter rolls, irrespective of seated position. For near-seated occupants, seatbelt effectiveness was higher in ≤1 roll than 1+ roll, at 72.3% compared to 28.3%. For far-seated occupants, seatbelt effectiveness was similar in ≤1 and 1+ roll samples at 78.3% and 76.8%, respectively. Near-seated occupants had the lowest serious injury risk when they were the sole occupant in the vehicle. This was also true for non-ejected occupants. However, far-seated occupants had a lower injury risk when another occupant was involved in the crash. Conclusions. The effect of carrying another occupant appears to reduce the risk of serious injury to far-seated occupants. However, near-seated occupants are better off being the sole occupant in the vehicle. Seatbelt effectiveness was lowest at 28.3% for non-ejected, near-seated occupants in 1+ rolls. This finding deserves further evaluation in an effort to improve seatbelt effectiveness in rollovers. For belted drivers alone in a rollover, fatality risks are 2.24 times higher for the far- versus near-seated position. Analysis of rollovers by quarter turns indicates that occupants are both far-side and near-side in rollovers. The extent to which this confounds the relationship between roll direction, seating position, and injury risk is unknown.
Read full abstract